skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Norman, M R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Intertwined charge and spin correlations are ubiquitous in a wide range of transition metal oxides and are often perceived as intimately related to unconventional superconductivity. Theoretically envisioned as driven by strong electronic correlations, the intertwined order is usually found to be strongly coupled to the lattice as signaled by pronounced phonon softening. Recently, both charge and spin density waves (CDW and SDW) and superconductivity have been discovered in several Ruddlesden-Popper (RP) nickelates, in particular trilayer nickelates R E 4 Ni 3 O 10 ( R E = Pr , La). The nature of the intertwined order and the role of lattice-charge coupling are at the heart of the debate about these materials. Using inelastic x-ray scattering, we mapped the low-energy phonon dispersions in R E 4 Ni 3 O 10 and found no evidence of softening near the CDW wave vector over a wide temperature range, which contrasts with the pronounced anomalies frequently observed in cuprate superconductors. Calculations of the electronic susceptibility revealed a peak at the observed SDW ordering vector but not at the CDW wave vector. Our experimental and theoretical findings highlight the crucial role of the spin degree of freedom and establish a foundation for understanding the interplay between superconductivity and density-wave transitions in RP nickelate superconductors and beyond. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Spin liquids are quantum phases of matter with a variety of unusual features arising from their topological character, including “fractionalization”—elementary excitations that behave as fractions of an electron. Although there is not yet universally accepted experimental evidence that establishes that any single material has a spin liquid ground state, in the past few years a number of materials have been shown to exhibit distinctive properties that are expected of a quantum spin liquid. Here, we review theoretical and experimental progress in this area. 
    more » « less
  4. null (Ed.)
    Abstract Amongst the rare-earth perovskite nickelates, LaNiO 3 (LNO) is an exception. While the former have insulating and antiferromagnetic ground states, LNO remains metallic and non-magnetic down to the lowest temperatures. It is believed that LNO is a strange metal, on the verge of an antiferromagnetic instability. Our work suggests that LNO is a quantum critical metal, close to an antiferromagnetic quantum critical point (QCP). The QCP behavior in LNO is manifested in epitaxial thin films with unprecedented high purities. We find that the temperature and magnetic field dependences of the resistivity of LNO at low temperatures are consistent with scatterings of charge carriers from weak disorder and quantum fluctuations of an antiferromagnetic nature. Furthermore, we find that the introduction of a small concentration of magnetic impurities qualitatively changes the magnetotransport properties of LNO, resembling that found in some heavy-fermion Kondo lattice systems in the vicinity of an antiferromagnetic QCP. 
    more » « less